Jan 13, 2009	Page 1 of 3						
Hole Number: E	R2007-29					Units: N	1ETRIC
Project Name:	Norway - South Norway	Primary Coordinates Gri	d: UTM84-32N		Destination Coordinates Grid: UTM:	Collar Dip:	-49.00
Project Number:	203	North: 6659843.20			North: 60.07	Collar Az:	224.30
Location:	Ertelia	East: 557760.52			East: 10.04	Length:	168.95 (m)
		Elev: 208.70			Elev: 208.70	Start Depth:	0.00 (m)
Date Started:	Jan 20, 2007	Collar Survey: N	Plugged:	Ν	Contractor: Drillcon Core AB	Final Depth:	168.95 (m)
Date Completed:	Jan 21, 2007	Multishot Survey: N	Hole Size:	WL-56/39	Core Storage:		
Logged By:	C. Cockburn	Pulse EM Survey: N	Casing:	Left in hole, capped.			
Comments: Targe	t: NW Trench and associated Mag	High					
Summ	nary: No mineralization. Mag High	ikely associated with local magnetite from 24-34 r	meters depth.				

Sample Averages

Detailed Lithology			Assay Data						
From (m)	To (m)	Lithology	Sample Number	From (m)	To (m)	Length (m)	Ni%	Cu%	Co%
0	3.20	C, Casing			-				

Jan 13, 2009

DETAILED LOG

Hole Number: ER2007-29

Units: METRIC

Detailed Lithology	/			Assay	y Data			
From (m) To (m)	Lithology	Sample Number	From (m)	To (m)	Length (m)	Ni%	Cu%	Co%
3.20 168.95	GAB, Gabbro	PG04946	29.00	30.00	0 1.00	0.0080	0.0070	0.0040
		PG04947	30.00	31.00	0 1.00	0.0090	0.0060	0.0030
3.20 168.95	GAB, Gabbro Light to dark grey/green, weakly to locally strongly magnetic (avg. 40 on mag sus from 24-34m), non conductive, and non-mineralized. Most of unit consists of fine to medium grained mottled textured chlorite, plagioclase, amphiboles, biotite and pyroxene. Unit becomes distinctly coarse grained from 19.26 to 36.95 and consists of 0.5 to 1.0 cm wide green pyroxenes (25-30%) set in a light matrix of plagioclase (50-55%) with magnetite clusters (0-10%), biotite 2-5% and occasional red garnets. Decicentimetric intervals of siliceous pegmatite (quartz veins) occur throughout unit in 3%. Edges of pegmatites/quartz veins are altered with increased amounts of biotite chlorite and elongated garnets. Multiple random quartz carbonate and serpentenite veinlets throughout which are likely fracture fillings along microfaults and fractures. Mineralization 150.32 - 151.86 : PO Pyrrhotite, DIS Disseminated, 1% diss PO/PY Alteration 40.50 - 40.50 :SERP Serpentine, V Vein, M Moderate 35 degrees to core axis 117.00 - 117.00 :SERP Serpentine, V Vein, M Moderate 35 degrees to core axis 84.50 - 85.00 :SRP Serpentine, V Vein, M Moderate parallel to core axis 60.05 - 63.15 :SERP Serpentine, V Vein, M Moderate parallel to core axis 117.00 = 117.00 :FLT Fault, 45 Deg to CA quartz carb infilling 117.28 - 147.80 : FLT Fault, 65 Deg to CA major fault filled with fault gauge 114.20 = 161.40 RQD 53.79 - 54.00 : 0.00 % RQD 100.00 % Core 55.65 = 55.85 : 0.00 % RQD 100.00 % Core 53.79 - 54.00 : 0.00 % RQD 100.00 % Core 53.75 = 66.75 : 20.00 % RQD 100.00 % Core	PG04946 PG04947 PG04948	29.00 30.00 150.50	30.00 31.00 151.00	2 1.00 0 1.00 0 0.50	0.0080 0.0090 0.0720	0.0070 0.0060 0.0770	0.0040 0.0030 0.0100
	100.00 - 100.35 : 20.00 % RQD 100.00 % Core 157.85 - 158.00 : 0.00 % RQD 100.00 % Core 160.30 - 160.40 : 0.00 % RQD 100.00 % Core							

Jan 13, 2009

DETAILED LOG

Hole Number: ER2007-29

Units: METRIC

Detailed Lithology		Assay Data							
From (m) To (m)	Lithology	Sample Number	From (m)	To (m)	Length (m)	Ni%	Cu%	Co%	
	 MINOR INTERVALS: Minor Interval: 19.26 - 36.95 GAB, Gabbro Coarse Grained Gabbro Norite? -Unit becomes distinctly coarse grained from 19.26 to 36.95 and consists of 0.5 to 1.0 cm wide green pyroxenes (25-30%) set in a light matrix of plagioclase (50-55%) with magnetite clusters (0-10%), biotite 2-5% and occasional red garnets. Mag sus increases to an avg of 40 throught this unit. Minor Interval: 36.95 - 37.78 PEG, Pegmatite 95% quartz, 5% biotite. Edges of contacts are sharp and strongly altered with chlorite and mica (biotite-muscovite). Upper contact 45 lower contact 85 DTCA. Minor Interval: 56.25 - 57.3 PEG, Pegmatite Pegmatite (quartz vein) lower and upper contact at 45 dtca Minor Interval: 150.32 - 151.86 8, Dyke Mafic dike? Distinctly finer grained than adjacent gabbro norite. Relatively sharp contacts (upper contact 40 DTCA and lower contact 85 DTCA) consists of very fine grey (feldspars?) and mafic (amphiboles) grains. Increased sulphide content noted in unit consisting of mostly disseminated and lesser blebby Po throughout. Sulphides 0.5 to 2.0 % overall. Magnetite occurring in 1-2% throughout (mag sus 0.5 to 5.0 and averaging 2.5) 								

Samples

Sample Number	From (m)	To (m)	Ni%	Cu%	Co%
Sample Type ASSAY					
PG04946	29.00	30.00	0.0080	0.0070	0.0040
PG04947	30.00	31.00	0.0090	0.0060	0.0030
PG04948	150.50	151.00	0.0720	0.0770	0.0100